7. NUMERICAL LINEAR

ALGEBRA

§7.1. The Power Method for Finding

Dominant Eigenvalues

Finding eigenvalues, by first finding the

characteristic polynomial, can be
quite difficult for large matrices.
Often we only want to find the
dominant eigenvalue, that is, the one
with largest absolute value.

The dominant eigenvalue of a
matrix is a real eigenvalue that occurs
with multiplicity 1 and whose
absolute value exceeds the modulus
of any other eigenvalue. A dominant
eigenvector is an eigenvector for the
dominant eigenvalue (if it exists).
Clearly not all square matrices have a
dominant eigenvalue.

203

A = dominant
a = recessive

10 7 -2
Example 1: The matrix A = (0 9 —31j has eigenvalues

01 -2
+3{'
10, 7 +4/3I

5 - The non-real eigenvalues have modulus

/13, 50 10 is the dominant eigenvalue.

17 -2
Example 2: If A is as above, then A — 91 = (0 0 —31J

01-1
—11++/3

: i :
has eigenvalues 1, 5 . (We just subtract 9 from

the eigenvalues of A.) The non-real eigenvalues have
modulus /31 , so there is no dominant eigenvalue.

Theorem 1: Suppose A is a non-zero n x n diagonalisable
real matrix with eigenvalues A4, A2, ..., Ak and suppose that
A1 Is the dominant eigenvalue. Let e;, ..., ek be a
corresponding basis of eigenvectors. Let vy be any vector
in R" such that vo ¢ (e, ..., €n).

(AVn | Vn)
[Vnl?
Proof: Since A is a non-zero diagonalisable matrix it
must have a non-zero eigenvalue and so A, = 0.

Let (ei | &)) = eij.

For all n, let v, = A"g. Then — A1 asn — oo.

204

Since each ej = 0, e;ji = |ej|? > 0 for all i.
NOW Vg = X181 + X065 + ... + Xkek for some real numbers Xxq,
X2, ..., Xk Where x; # 0.

Then vy = AnVo =X1 7\,1n e1+ X2 7\,2n e+ ... + Xk 7\,kn ek.
Avp = A"y = x ™ le + 30 M ey + L+ e ML e

k
> xixj Ai "I e
(Avp | Vn) 1,j=1
a2k
z XiXj Ai "Aj "eij
ij=1
Here the sums are over all combinations of i, j.

k
x12k12”+1|e1|2 + Z XiXj Ai n+1kjn €ij
ij=1
k
X2 2e? + D XiXj Ai "\ "eij
ij=1
Here the sums are over all combinations of i, j except
when i =] = 1. This has been separated out.

205

k

XiXj |, XinJn[eij j
At Z(Xiz}w(hz le1|?

1j=1
k

3ol

ij=1
—> A1 asn — oo.

This is because ﬁl <1, and so [ﬁl} — 0, except
1 1

wheni=j=1. %©

This theorem is the basis for the Power Method.
We start by multiplying an initial vector v by A and
(AV|V)
-
We’re going to repeatedly multiply v by A. Since
the components of A" could become large, and since any
non-zero scalar multiple of an eigenvector is an
eigenvector, we scale Av by dividing it by the largest
absolute value of its components. Having scaled Av we
use this as the next v and continue.
If all goes well Av will converge to a dominant
eigenvector and A will converge to the dominant

206

compute (Av|v), |v[> and their quotient, q =

eigenvalue. For simplicity we set up a Power Method
Worksheet.

POWER METHOD WORKSHEET

Finds the dominant eigenvalue Aa and eigenvector va

A Vv Av (Av,V) | V[* q
A 1 (AV|Vv)
(j n |V|2
1
divide Av —>Va — XA
A by largest
component

31
Example 3: Find the dominant eigenvalue of A = £4 SJ

Solution:

A v Av | (Av|v)y | V[q

31 1 4 13 2 6.5

oo L) | ()

31 0.4444 2.3332) | 7.8144 | 1.1975 | 6.5256
4 5 1 (6.7776

31 0.3443 2.0329) | 7.0771|1.1185 | 6.3273
4 1 (6.3772

207

3 1) (0.3178) |(1.9534) | 6.8920 | 1.1010 | 6.2598
4 5 1 [6.2712
3 1) (0.3115) | (1.9345) | 6.8486 | 1.0970 | 6.2430
4 5 1 (6.246
3 1) (0.3097) |(1.9291) | 6.8362 | 1.0959 | 6.2380
4 5 1 6.2388
3 1) (0.3092) |(1.9276) | 6.8328 | 1.0956 | 6.2366
4 5 1 6.2368
3 1) | (03091 |(1.9273) |6.8321 | 1.0955 | 6.2365
4 5 1 6.2364
3 1) (0.3090) |(1.9270) | 6.8314 | 1.0955 | 6.2359
4 5 1 6.2360

So our estimate of the dominant eigenvalue is
6.2359. Using the fact that the trace is 8 we can find the
other eigenvalue to be 1.7641. Of course, we would never
use the Power Method for a 2 x 2 matrix.

§7.2. Recessive Eigenvalues

Suppose we’d like to find other eigenvalues. The
recessive eigenvalue (if it exists) of a matrix is a real
eigenvalue that occurs with multiplicity 1 and whose
absolute value is less than the modulus of any other
eigenvalue. A recessive eigenvector is an eigenvector for

208

the recessive eigenvalue (if it exists). Again, not all square
matrices have a recessive eigenvalue.

10 7 -2
Example 4: The matrix A = (O 9 —31) has eigenvalues

01-2
A
10, TENB

2

The non-real eigenvalues have modulus /13, so this
matrix does not have a recessive eigenvalue.

17 -2
Example 5: The matrix (0 0 —39 has eigenvalues

01-1
—11 ++/3i
\[31, so there is a recessive eigenvalue, namely 1.

. The non-real eigenvalues have modulus

Since the non-zero eigenvalues of A are the
reciprocals of the non-zero eigenvalues of A, the
recessive eigenvalue of A is the reciprocal of the
dominant eigenvalue of Al So to find the recessive
eigenvalue of A we proceed as follows.

209

TO FIND THE RECESSIVE EIGENVALUE OF A
(Smallest in absolute value)

(1) Find AL, (If A is not invertible, the recessive

eigenvalue is 0.)

(2) Use the Power Method to find the dominant

eigenvalue, A, of AL,

(3) Then 1/X is the smallest eigenvalue of A.

Example 6: Find the recessive eigenvalue of

212 -172 39
A=1462 -372 84
882 —-702 159
6 1 -2
Solution:A—lz—B—l0 -21 23 -7
-126 76 -20
-6 -1 2
SoB=30A!l=|21 -23 7
126 -76 20

This is the matrix to which we apply the Power Method.

210

B Bv (Bv|v)
-6 -1 2 -5 50
21 =23 7 5
126 -96 20 50
-6 -1 2 -0.1 2.5 -2.19
21 =23 7 0.1 2.6
126 -96 20 1 -2.2
-6 -1 2 0.9615 —-8.4614) | —23.8275
21 -23 7 —-8.7319
126 -96 20 —0.8462 8.225
v (Bviv) | VP q
50 3 16.6667
-0.1 -2.19 1.02 | -2.1471
0.1
1
0.9615 | | —23.8275 | 2.6405 | —9.0239
1
—0.8462

211

B Y Bv (Bv|v)
-6 -1 2 0.9690 —-8.6978) | —24.5069
21 -23 7 1 —9.2443
126 -96 20 —-0.9419 7.256
-6 -1 2 0.9409 ~8.2152) | —21.8459
21 -23 7 1 —-8.73%4
126 -96 20 —0.7849 6.8554
-6 -1 2 0.9404 —-8.2120) | —21.8000
21 -23 7 1 —8.7452
126 -96 20 —0.7848 6.7944
v (Bvlv) \i g
0.9690 —24.5069 2.8261 -8.6716
1
—-0.9419
0.9409 —21.8459 2.5014 —8.7335
1
—0.7849
0.9404 —21.8000 2.5003 —8.7190
1

—0.7848

B Y, Bv (Bv|v)
-6 -1 0.9390 -8.1878) | —21.6719
21 -23 1 -8.7193
126 -96 —0.7769 6.7760
-6 -1 0.9390 —8.1882) | —21.6719
21 -23 1 -8.7207
126 —-96 -0.7771 6.7720
-6 -1 0.9389 —-8.1864) | —21.6628
21 -23 1 —-8.7186
126 -96 —0.7765 6.7714
v (Bv|v) Wi q
0.9390 -21.6719 2.4853 -8.7200
1
-0.7769
0.9390 -21.6719 2.4856 -8.7190
1
-0.7771
0.9389 —21.6628 2.4845 -8.7192
1
—0.7765

213

So we have found that the dominant eigenvalue of
B = 30A! is approximately —8.7192.

Hence the dominant eigenvalue of At is approximately

8.7192
——3g - —0.29064.
Therefore the recessive eigenvalue of A is approximately
1
~ 029064 =~ 3.4407.
—8.1864
The vector | ~8-7186 | jsan eigenvector for A, as well as
6.7714

A~ and 30A™ for this eigenvalue.

87.3. Finding Nearest Eigenvalues

We can adapt the above methods to the problem of
finding other eigenvalues. Since the eigenvalues of A —kl
are the eigenvalues of A, minus k, if we want the
eigenvalue nearest to the real number k we find the
recessive eigenvalue of A —Kl.

214

TO FIND THE EIGENVALUE CLOSEST TO k
(1) Write down B = A —KI.
(2) Compute B™L. (If A — Kkl is not invertible then k is
itself an eigenvalue.)
(3) Use the Power Method to find the dominant
eigenvalue, A, of B,
(4) Then A1 is the recessive eigenvalue for B.
(5) Then L'+ Kk is the nearest eigenvalue to k for A.

Note that this method will not work for repeated
eigenvalues, or conjugate pairs of eigenvalues.

Example 7: Find the eigenvalue of

16 3 2 13
5 10 11 8
A=l9 g 7 12/ thatisclosestto 10, and find a
4 15 14 1
corresponding eigenvector.
10 3 2 13
5 0 11 8

Solution: Let B=A - 10l =. 9 6 -3 12
4 15 14 -9

215

-601 287 423 -49
1 303 -201 =129 87
B—l -
T 1440 | 47 71 -81 23
311 -97 -153 -1
~601 287 423 —49
303 -201 =129 87
Let C =1440B! = 47 71 -81 23

311 -97 -153 -1

Using the Power Method on C, starting with v = we

R e

get —720 as the dominant eigenvalue for C.

720 . : :
L —1a40 T~ 0.5 is the dominant eigenvalue for B,

. =2 is the recessive eigenvalue for B = A — 10I.
.. 8 1s the nearest eigenvalue to 10, for A.
For a corresponding eigenvector we may take a dominant
1 2
-05 -1
eigenvector for C, namely | 4 |, or more simply, |

-05 -1

216

8§7.4. Perron Matrices

If the Power Method converges it will usually give
the dominant eigenvalue and eigenvector. The exception
Is when you pick a starting vector that just happens to be
in the subspace spanned by the eigenvectors for the other
eigenvalues. This is quite unlikely but you must be aware
that it can happen. You could try a second starting vector
if you were really worried.
But the method may not even converge. It may not
converge for a couple of reasons. The g values estimate
may go to infinity. This will happen if the eigenvalue with
largest modulus is repeated. Or it may jump around. This
will happen when there is more than one eigenvalue with
largest modulus, or one repeated value.

It would be useful to know in advance whether the
method should work. Such matrices will have one
positive real eigenvalue, with multiplicity 1, that exceeds

A Perron matrix is a real
square matrix that has a
positive real eigenvalue R,
with multiplicity 1, such
that the modulus of all
other eigenvalues is
strictly less than R.

the modulus of all other eigenvalues.

217

This is precisely the type of matrix for which the Power
Method works.

The spectrum of a matrix A is the set of its
eigenvalues. It’s denoted by o(A). The spectral radius of
A is the largest modulus of the eigenvalues of A. So a
Perron matrix has a spectral radius R where R is the
dominant eigenvalue.

Example 8: Find the spectrum and spectral radius of

1 2 3 4

1
2 .
3

Solution: From example 4,
co(A) = {10, -2 + 2i, -2 - 2i, 2}.
The spectral radius is 10. Note that |-2 + 2i| = V8 < 10.

2 3
A=13 4
4 1

N B

A real matrix A = (ajj) is called a non-negative
matrix if each aj; > 0. We denote this by writing A > 0.

We call A a positive matrix if each ajj > 0. This we denote
by A>0.

Theorem 2 (PERRON): Positive matrices are Perron

matrices.
Proof: We omit the proof here. %

218

Often a matrix is not a positive matrix but has a
power that is. In most cases this shows that the original
matrix is a Perron matrix.

Theorem 3: If AN > 0 for some odd positive integer N
then A is a Perron matrix.

Proof: Suppose c(A) = {\1, A2, ..., Ak

Then o(AN) = {WN, AN, ..., AN}

Since AN is positive, one of these eigenvalues, say AN, is
real and for all i > 2, |LifN < AN,

Then for all i > 2, |Aj| < |\4].

Clearly A; must have multiplicity 1.

Suppose Az is non-real. Then its conjugate, say A, would
be also an eigenvalue.

But that would give |A,|N = |A4|N, a contradiction.

Hence A; is real.

If X1 <0 then AN < 0, a contradiction (remember that N
is odd). Y ©

The requirement that N be odd is necessary, as the
following example shows.

-1 -2
Example 9: If A = _2 0 then

, (3 2
A=l 5, |0

219

xa2(h) =A% — 5L + 4
=(A-1)(A-4).
Hence o(A?) = {1, 4} and so A? is a Perron matrix.
However ya(A) =22 + A -2
=(A-1)(A+2).
So o(A) = {1, -2} and so A is not a Perron matrix.

But, for non-negative matrices, any power that is
positive is sufficient to ensure that the original matrix is a
Perron matrix.

Theorem 4: If A >0and AN > 0then AM >0
for all M > N.
Proof: Let B = AN, Then the i-j component of

AN*L = > aihyj . Each term is non-negative, and can only
k

be zero if aik = 0 for all k. But then the i’th row of every

power of A would be zero, a contradiction. %©

Corollary: If A >0 and AN > 0 for some N then A is a

Perron matrix.

§7.5. Computational Complexity

An algorithm is a computational procedure for
finding the answer to some mathematical (or other)
problem. Mostly they are implemented on a computer, but
simple algorithms are still carried out using just pencil

220

and paper. There are still some people alive who don’t
need to reach for their calculators to check the addition on
a restaurant bill! Addition and multiplication of integers
can be carried out by hand using algorithms that are still
taught in schools.

The two most important requirements are:
(1) it should terminate in finite time;
(2) it should always give the correct answer.

Beyond this are considerations of storage space in
the computer and computational time. We have seen two
methods for evaluating a determinant, the first order
expansion and the second order expansion. Which is the
best one to use in practice? We have seen two methods
for finding the inverse of a matrix, using cofactors and
reducing (A | 1) to (1] A1) by elementary row operations.
Which one is computationally more efficient?

First there is the consideration of storage space.
The very early computers had very little storage space and
programmers bent over backwards to use every single
byte efficiently. A bit is the amount of storage space
required to store a 0 or a 1. A byte is 8 bits and is capable
of storing a number from 0 to 255. Bytes can be used
together to store larger integers or real numbers (up to a
certain number of significant figures). The first computer
| ever programmed was at a time when there were only 6

221

computers in the whole of Australia. This one had 16K of
memory and took up a whole room! Even a simple
program could easily use this up very quickly.

The first personal computer | ever owned had only
1K of memory. It used a TV screen for its display and
about a quarter of that precious memory was reserved for
storing the screen display. Clever programmers on these
machines soon learnt how to get access to the display
memory and frequently used it to do intermediate
computations before displaying the final answers. You
could see this happening as the screen flashed all sorts of
nonsense on the screen during the calculation before
finally displaying the answers at the end.

These days are long gone. Memory is virtually
unlimited. It’s not unusual to have, on an ordinary
personal computer, 128 gigabytes of memory. That is
about 128 thousand million bytes. Programs frequently
use the hard disk as virtual memory, and here several
terabytes are not uncommon. That’s about a million
million bytes.

Apart from the ready availability of memory most
alternative algorithms for performing the same
calculation use roughly the same amount of memory. In
comparing algorithms you can forget the amount of
memory used.

222

This leaves speed. We want to choose an algorithm
that performs faster than all its competitors. Now speed
depends on hardware. Some computers are much faster
than others, but no computer is as fast as its programmers
would like. Speeds have increased over the years, but
nowhere to the extent that memory has.

In comparing alternative algorithms we don’t need
to bother about the speed of the hardware. Whichever
algorithm we use it will be used on a specific piece of
hardware. What is important is the number of steps. We
want to make this as little as possible.

Moving data around, such as when we swap two
rows in a matrix, is almost instantaneous. Addition and
subtraction take about the same amount of time.
Multiplication and division often take somewhat longer,
though on some computers they take about the same time.

More complicated mathematical functions, such as
square roots or trigonometric functions, use power series
expansions and need to be analysed separately. We won’t
be using any of these here, so we’ll just count the total
number of multiplications and divisions. For simplicity
we’ll assume that both of these take the same amount of
time. In a test on a certain laptop using a certain
programming language, each took about 10
microseconds.

The input to an algorithm will vary, and the number
of steps (by which we mean just multiplication and

223

division) will vary with the size of the input. Evaluating a
100 x 100 determinant will take many more steps than for
a 3 x 3 determinant, no matter which algorithm we use.
So we need to measure the size of the input and work out
the number of steps as a function of this size. This
function we call the complexity function. If we denote it
by I" then I'(n) is the number of steps the algorithm takes
with input of size n.

The size of an input can be defined in many
different ways and hence the complexity function
depends on such a definition. For example we might
define the size of an n x n matrix to be just n. Or we might
define it to be n?, the number of components. Perhaps we
might define it to be the number of bytes required to store
the input, which will be a constant multiple of n2.

If the input is a positive integer N, we might define
N to be the size of the input. Or we might define it to be
the number of digits, which will be approximately logioN.

One of the problems in determining the complexity
function of an algorithm is that for many algorithms
inputs of similar sizes might take dramatically different
times to perform. For example, factorising a positive
integer N by the most obvious method of testing for
divisibility by all the numbers from 2 up to YN would take
about VN divisions if N is prime and we had to go all the
way up to VN.

224

On the other hand if N = 2" for some n, we’d find
factors of 2 at each stage and the algorithm would take
about n steps, that is log,N steps which is very much better
than YN. For such algorithms we’d need to estimate the
average number of steps and this can get very
complicated.

Now for factorisation I'(n) = VN, if we take the
worst case. This doesn’t sound too bad for a complexity
function. But that is because we’re taking the number
itself as a measure of size. A more appropriate measure
would be the number of digits of N. This value will be

about n =log;oN and in terms of n, I'(n) = \W which is
roughly 3"2. Such a complexity function is called
exponential. An algorithm with an exponential
complexity function is considered to be of limited use.

There are improvements to the simple factorisation
algorithm, but these only make minor reductions to the
number of steps. Essentially factorisation of integers is
considered to be an intractable problem, that is,
algorithms do exist to solve the problem but the number
of steps grows so fast with the input size that it is only
feasible to use it on relatively small input. Factorising an
arbitrary 200 digit number has been done but it has taken
a large number of very fast computers many months to
perform just a single factorisation.

225

Let’s turn our attention to the problem of
evaluating determinants, comparing the first order
method with the second order method.

First Order Method: Let an be the number of steps in

evaluating an n x n determinant by the first order method,
running along the first row. We have to evaluate n

determinants of size (n—1) x (n—1). Each involves an-1

steps so that means nan-1 steps in all. Then each
determinant is multiplied by plus or minus the entry in the

first row, giving an extra n steps. In all we have nan-1 + n
steps.

So we get the recurrence equation for an, the
number of steps in evaluating an n x n determinant by the
First Order Method:

ap=0;
an=n(an-1 +1).

Second Order Method: Let by be the number of steps in
evaluating an n x n determinant by this method. Clearly

b; =0and b, = 3. We take each of the @ pairs of columns.

For each one we must compute an (n-2) x (n-2)

determinant, taking bn—2 steps. We then multiply this by a
certain 2 x 2 determinant, taking an extra 4 steps — three

226

to calculate the 2 x 2 determinant and one to multiply the
two determinants which, in all takes bn-2 + 4 steps.

This has to be done @ times before these values

are combined to give the answer.

So we get the recurrence equation:
b1 = 0;
b2 =2;

b = @ (bno +4) |

For the Echelon Form Method (reduce to echelon
form and multiply by the diagonal elements) the
approximate number of multiplications and divisions is
given by:

Cn =%(4n3—3n2 +5n - 6).

n|1tOrder |2"9Order |Echelon
Expansion | Expansion | Form

1 0 0 0
2 2 2 4
3 9 9 15
4 40 30 37
5 205 120 74
6 1236 495 130

227

7 8,659 2,583 209
8 69,280 13,940 315

So the second order expansion is substantially
quicker than the first order expansion. But the Echelon
Form Method is enormously faster. I doubt if there’s a
computer on earth that could compute a 1000 x 1000
determinant by any other method than the Echelon Form
one.

Remember that | introduced the second order
expansion method not because it’s quicker but as an aid
to proving theorems about determinants.

Good algorithms are considered to be those where
I'(n) is a polynomial. These are said to operate in
polynomial time. Bad algorithms are those where I'(n) is
exponential, or worse. Of course for some problems there
are algorithms but no ‘good’ ones. Fortunately most
problems in linear algebra can be solved by polynomial
time algorithms.

228

EXERCISES FOR CHAPTER 7

Exercise 1: Use the Power Method to find the dominant
eigenvalue, if one exists, for the following matrices:

() (2 g;(n) (j ‘fj;(iii) @ j}(iv) [f) ‘jj.

Exercise 2: Use the Power Method to find the dominant
eigenvalue, if one exists, for the following matrices:

5 1 4 6 1 -1 2 3 _4
@M 6 2 =71 (i 0 8 13 (i) |-6 1 2
-1 0 3 4 -6 5 0 8 7

Exercise 3: Use the Power Method to find the dominant
eigenvalue, if one exists, for the following matrices:

1115 1 46 0
2 1 4 0 317 2
MWz 2 5 1[:()|4 3 0 2]
01 4 2 1 4 5 3

Exercise 4: Find the recessive eigenvalue, if one exists,
of the following matrices:

229

5 1 4 1 1 15
51 21 4 0
- vl 8 2 =7 i
o5 3 2R 5 g)
0 1 4 2

Exercise 5: Find the nearest eigenvalue to 5 for the matrix

5 -2 1
A=|-2 7 0
1 0 6

230

SOLUTIONS FOR CHAPTER 7

Exercise 1: (i) 5.7913; (ii) no dominant eigenvalue;
(i) 9.7720; (iv) 5 (BEWARE: if you start with v = @

the method will give the value 3. This is because this is
an inappropriate starting vector.)

Exercise 2: (i) 5.8063; (ii) no dominant eigenvalue;
(iii) 10.3768.

Exercise 3: (i) 8.9165; (ii) 11.1062.

1(2 -
Exercise 4: (i) The inverse is B = 7 (_3 5 j
2 _
Applying the Power Method to _3 g | Wwe get the

dominant eigenvalue of 5.7913.

791
The dominant eigenvalue of B is > 79 3 =0.8273.

Hence the recessive eigenvalue of the original matrix is
1
0.8273 - 1-2088-
Note that in exercise 1 we found the dominant eigenvalue
to be 5.7913.
231

The sum of these eigenvalues is 7.0001 which is very
close to the trace.

6 -3 -15
(i) The inverseisB = — | ~11 19 59
2 -1 4
6 -3 -15
Applying the Power Method to | —11 19 59 | e
2 -1 4

find that it doesn’t have a dominant eigenvalue so the
original matrix doesn’t have a smallest. However all is not
lost. We know from exercise 1 that the dominant
eigenvalue is 5.7913 and the trace is 10, so the sum of the
other two eigenvalues is 10 — 5.7913 = 4,1937. If the two
- 4.1937

remaining are real they must be both equal to 5 =
2.09685. The product of these eigenvalues is 25.4630.
Clearly this can’t be the case since the determinant must
be an integer. In fact the determinant is 27.

So the remaining two eigenvalues must be a + bi where a,
b are real. Clearly a = 2.09685.

Since the product of the eigenvalues must be 27 we have

27
a’+b’= 57013~ 4.6622.

So b? = 4.6622 — 2.09685% = 0.2654.

232

This gives b =+ 0.5152. So in fact we have found all three
eigenvalues.
3 9 -3 -6
11-6 -30 22
(ili) Theinverseis B = 121 0 6 —4 2
3 3 -3 0
3 9 -3 -6

-6 -30 22 4
Applying the Power Method to | 6 -4 2
3 3 -3
we get the dominant eigenvalue of —33.0680.
: : . 33.0680
The dominant eigenvalue of B is — 12 - —2.7557.
Hence the smallest eigenvalue of the original matrix is
1
0 -2 1
Exercise 5: LetB=A-5I=|-2 2
1 0 1
-2 -2 2
1
B—l - g —2 1 2 .
2 2 4

233

-2 -2 2

The dominant eigenvalue of 6B=|-2 1 2
2 2 4

1s 5.1394.

1394
The dominant eigenvalue of B is > gg = 0.8566.

The recessive eigenvalue of A — 5l is therefore

0.8566 1.1674.
The closest eigenvalue of Ato 5is 6.1674.

234

coopersnotes.net
LIST OF TITLES

GENERAL

ELEMENTARY

e Basic Mathematics

e Concepts of Algebra
e Concepts of Calculus
e Elementary Algebra

e Elementary Calculus

1t YEAR UNI

e Techniques of Algebra
e Techniques of Calculus
e Matrices

2" YEAR UNI

e Linear Algebra

e Languages & Machines
e Discrete Mathematics

e The Mathematics At The Edge Of The
Rational Universe

3" YEAR UNI
e Group Theory volume 1
e Group Theory volume 2
e Galois Theory
e Graph Theory
e Number Theory
e Geometry
e Topology
e Set Theory

POSTGRADUATE

¢ Ring Theory

¢ Representation Theory
¢ Quadratic Forms

e Group Tables vol 1

e Group Tables vol 2

235

236

