

203

7. NUMERICAL LINEAR

ALGEBRA

§7.1. The Power Method for Finding

Dominant Eigenvalues
 Finding eigenvalues, by first finding the

characteristic polynomial, can be

quite difficult for large matrices.

Often we only want to find the

dominant eigenvalue, that is, the one

with largest absolute value.

 The dominant eigenvalue of a

matrix is a real eigenvalue that occurs

with multiplicity 1 and whose

absolute value exceeds the modulus

of any other eigenvalue. A dominant

eigenvector is an eigenvector for the

dominant eigenvalue (if it exists).

Clearly not all square matrices have a

dominant eigenvalue.

204

Example 1: The matrix A =






10 7 −2

0 9 −31

0 1 −2

 has eigenvalues

10,
7  3i

2
 . The non-real eigenvalues have modulus

13 , so 10 is the dominant eigenvalue.

Example 2: If A is as above, then A − 9I =






1 7 −2

0 0 −31

0 1 −11

has eigenvalues 1,
−11  3i

2
 . (We just subtract 9 from

the eigenvalues of A.) The non-real eigenvalues have

modulus 31 , so there is no dominant eigenvalue.

Theorem 1: Suppose A is a non-zero n  n diagonalisable

real matrix with eigenvalues 1, 2, ..., k and suppose that

1 is the dominant eigenvalue. Let e1, ..., ek be a

corresponding basis of eigenvectors. Let v0 be any vector

in ℝn such that v0  e2, ..., en.

For all n, let vn = Anv0. Then
Avn | vn

|vn|2
 → 1 as n → .

Proof: Since A is a non-zero diagonalisable matrix it

must have a non-zero eigenvalue and so 1  0.

Let ei | ej = eij.

205

Since each ei  0, eii = |ei|
2 > 0 for all i.

Now v0 = x1e1 + x2e2 + ... + xkek for some real numbers x1,

x2, ..., xk where x1  0.

Then vn = Anv0 = x1 1
n

 e1 + x2 2
n e2 + ... + xk k

n ek.

Avn = An+1v0 = x1 1
n+1

 e1 + x2 2
n+1 e2 + ... + xk k

n+1 ek.

So
Avn | vn

|vn|2
 =


i,j=1

k

 xixj i
n+1j

n eij


i,j=1

k

 xixj i
nj

neij

Here the sums are over all combinations of i, j.

 =

x1
21

2n+1|e1|
2 + 

ij1

k

 xixj i
n+1j

n eij

x1
21

2n|e1|
2 + 

ij1

k

 xixj i
nj

neij

Here the sums are over all combinations of i, j except

when i = j = 1. This has been separated out.

206

 =

1 + 
ij1

k







xixj

xi
2 i







ij

1
2

n







eij

|e1|
2

1 + 
ij1

k







xixj

x1
2







ij

1
2

n







eij

|e1|
2

 → 1 as n → .

This is because






ij

1
2 < 1, and so







ij

1
2

n

 → 0, except

when i = j = 1. ☺

 This theorem is the basis for the Power Method.

We start by multiplying an initial vector v by A and

compute Av|v, |v|2 and their quotient, q =
Av|v

|v|2
 .

 We’re going to repeatedly multiply v by A. Since

the components of Anv could become large, and since any

non-zero scalar multiple of an eigenvector is an

eigenvector, we scale Av by dividing it by the largest

absolute value of its components. Having scaled Av we

use this as the next v and continue.

 If all goes well Av will converge to a dominant

eigenvector and  will converge to the dominant

207

eigenvalue. For simplicity we set up a Power Method

Worksheet.

POWER METHOD WORKSHEET

Finds the dominant eigenvalue  and eigenvector v

A v Av Av,v |v|2 q

A







1

...

1

n
Av|v

|v|2

A

divide Av

by largest

component

→ v

→ 

…… ………….. ……… …….. …. ………..

Example 3: Find the dominant eigenvalue of A = 








54

13

Solution:

A v Av Av|v |v|2 q










54

13
 









1

1
 









9

4

13 2 6.5










54

13
 









1

4444.0










7776.6

3332.2

7.8144 1.1975 6.5256










54

13
 









1

3443.0
 









3772.6

0329.2

7.0771 1.1185 6.3273

208










54

13
 









1

3178.0
 









2712.6

9534.1

6.8920 1.1010 6.2598










54

13
 









1

3115.0
 









246.6

9345.1

6.8486 1.0970 6.2430










54

13
 









1

3097.0
 









2388.6

9291.1

6.8362 1.0959 6.2380










54

13
 









1

3092.0
 









2368.6

9276.1

6.8328 1.0956 6.2366










54

13
 









1

3091.0
 









2364.6

9273.1

6.8321 1.0955 6.2365










54

13
 









1

3090.0
 









2360.6

9270.1

6.8314 1.0955 6.2359

 So our estimate of the dominant eigenvalue is

6.2359. Using the fact that the trace is 8 we can find the

other eigenvalue to be 1.7641. Of course, we would never

use the Power Method for a 2  2 matrix.

§7.2. Recessive Eigenvalues
 Suppose we’d like to find other eigenvalues. The

recessive eigenvalue (if it exists) of a matrix is a real

eigenvalue that occurs with multiplicity 1 and whose

absolute value is less than the modulus of any other

eigenvalue. A recessive eigenvector is an eigenvector for

209

the recessive eigenvalue (if it exists). Again, not all square

matrices have a recessive eigenvalue.

Example 4: The matrix A =






10 7 −2

0 9 −31

0 1 −2

 has eigenvalues

10,
7  3i

2
 .

The non-real eigenvalues have modulus 13 , so this

matrix does not have a recessive eigenvalue.

Example 5: The matrix






1 7 −2

0 0 −31

0 1 −11

 has eigenvalues

1,
−11  3i

2
 . The non-real eigenvalues have modulus

31 , so there is a recessive eigenvalue, namely 1.

 Since the non-zero eigenvalues of A−1 are the

reciprocals of the non-zero eigenvalues of A, the

recessive eigenvalue of A is the reciprocal of the

dominant eigenvalue of A−1. So to find the recessive

eigenvalue of A we proceed as follows.

210

TO FIND THE RECESSIVE EIGENVALUE OF A

(Smallest in absolute value)

(1) Find A−1. (If A is not invertible, the recessive

eigenvalue is 0.)

(2) Use the Power Method to find the dominant

eigenvalue, , of A−1.

(3) Then 1/ is the smallest eigenvalue of A.

Example 6: Find the recessive eigenvalue of

A =
















−

−

−

159702882

84372462

39172212

.

Solution: A−1 = −
1

30

















−−

−−

−

2076126

72321

216

.

So B = 30A−1 =
















−

−

−−

2076126

72321

216

.

This is the matrix to which we apply the Power Method.

211

B v Bv Bv|v

















−

−

−−

2096126

72321

216

















1

1

1















−

50

5

5

50

















−

−

−−

2096126

72321

216















−

1

1.0

1.0

















− 2.2

6.2

5.2

−2.19

















−

−

−−

2096126

72321

216

















− 8462.0

1

9615.0

















−

−

225.8

7319.8

4614.8

−23.8275

v Bv|v |v|2 q

















1

1

1

50 3 16.6667















−

1

1.0

1.0

−2.19 1.02 −2.1471

















− 8462.0

1

9615.0

−23.8275 2.6405 −9.0239

212

B v Bv Bv|v

















−

−

−−

2096126

72321

216

















− 9419.0

1

9690.0

















−

−

256.7

2443.9

6978.8

−24.5069

















−

−

−−

2096126

72321

216

















− 7849.0

1

9409.0

















−

−

8554.6

7354.8

2152.8

−21.8459

















−

−

−−

2096126

72321

216

















− 7848.0

1

9404.0

















−

−

7944.6

7452.8

2120.8

−21.8000

v Bv|v |v|2 q

















− 9419.0

1

9690.0

−24.5069 2.8261 −8.6716

















− 7849.0

1

9409.0

−21.8459 2.5014 −8.7335

















− 7848.0

1

9404.0

−21.8000 2.5003 −8.7190

213

B v Bv Bv|v

















−

−

−−

2096126

72321

216

















− 7769.0

1

9390.0

















−

−

7760.6

7193.8

1878.8

−21.6719

















−

−

−−

2096126

72321

216

















− 7771.0

1

9390.0

















−

−

7720.6

7207.8

1882.8

−21.6719

















−

−

−−

2096126

72321

216

















− 7765.0

1

9389.0

















−

−

7714.6

7186.8

1864.8

−21.6628

v Bv|v |v|2 q

















− 7769.0

1

9390.0

−21.6719 2.4853 −8.7200

















− 7771.0

1

9390.0

−21.6719 2.4856 −8.7190

















− 7765.0

1

9389.0

−21.6628 2.4845 −8.7192

214

So we have found that the dominant eigenvalue of

B = 30A−1 is approximately −8.7192.

Hence the dominant eigenvalue of A−1 is approximately

−
8.7192

30
 = − 0.29064.

Therefore the recessive eigenvalue of A is approximately

−
1

0.29064
 = − 3.4407.

The vector
















−

−

7714.6

7186.8

1864.8

 is an eigenvector for A, as well as

A−1 and 30A−1 for this eigenvalue.

§7.3. Finding Nearest Eigenvalues
 We can adapt the above methods to the problem of

finding other eigenvalues. Since the eigenvalues of A − kI

are the eigenvalues of A, minus k, if we want the

eigenvalue nearest to the real number k we find the

recessive eigenvalue of A − kI.

215

TO FIND THE EIGENVALUE CLOSEST TO k

(1) Write down B = A − kI.

(2) Compute B−1. (If A − kI is not invertible then k is

itself an eigenvalue.)

(3) Use the Power Method to find the dominant

eigenvalue, , of B−1.

(4) Then −1 is the recessive eigenvalue for B.

(5) Then −1 + k is the nearest eigenvalue to k for A.

Note that this method will not work for repeated

eigenvalues, or conjugate pairs of eigenvalues.

Example 7: Find the eigenvalue of

A =





















114154

12769

811105

132316

 that is closest to 10, and find a

corresponding eigenvector.

Solution: Let B = A − 10I =.





















−

−

914154

12369

81105

132310

216

B−1 =
1

1440





















−−−

−

=−

−−

115397311

23817147

87129201303

49423287601

.

Let C = 1440B−1 =





















−−−

−

=−

−−

115397311

23817147

87129201303

49423287601

.

Using the Power Method on C, starting with v =





















1

1

1

1

 we

get −720 as the dominant eigenvalue for C.

 −
720

1440
 = − 0.5 is the dominant eigenvalue for B−1.

 −2 is the recessive eigenvalue for B = A − 10I.

 8 is the nearest eigenvalue to 10, for A.

For a corresponding eigenvector we may take a dominant

eigenvector for C, namely





















−

−

5.0

0

5.0

1

, or more simply,





















−

−

1

0

1

2

217

§7.4. Perron Matrices
 If the Power Method converges it will usually give

the dominant eigenvalue and eigenvector. The exception

is when you pick a starting vector that just happens to be

in the subspace spanned by the eigenvectors for the other

eigenvalues. This is quite unlikely but you must be aware

that it can happen. You could try a second starting vector

if you were really worried.

But the method may not even converge. It may not

converge for a couple of reasons. The q values estimate

may go to infinity. This will happen if the eigenvalue with

largest modulus is repeated. Or it may jump around. This

will happen when there is more than one eigenvalue with

largest modulus, or one repeated value.

 It would be useful to know in advance whether the

method should work. Such matrices will have one

positive real eigenvalue, with multiplicity 1, that exceeds

the modulus of all other eigenvalues.

A Perron matrix is a real

square matrix that has a

positive real eigenvalue R,

with multiplicity 1, such

that the modulus of all

other eigenvalues is

strictly less than R.

218

This is precisely the type of matrix for which the Power

Method works.

 The spectrum of a matrix A is the set of its

eigenvalues. It’s denoted by (A). The spectral radius of

A is the largest modulus of the eigenvalues of A. So a

Perron matrix has a spectral radius R where R is the

dominant eigenvalue.

Example 8: Find the spectrum and spectral radius of

A =





















3214

2143

1432

4321

.

Solution: From example 4,

(A) = {10, −2 + 2i, −2 − 2i, 2}.

The spectral radius is 10. Note that |−2  2i| = 8 < 10.

 A real matrix A = (aij) is called a non-negative

matrix if each aij  0. We denote this by writing A  0.

We call A a positive matrix if each aij > 0. This we denote

by A > 0.

Theorem 2 (PERRON): Positive matrices are Perron

matrices.

Proof: We omit the proof here. 

219

 Often a matrix is not a positive matrix but has a

power that is. In most cases this shows that the original

matrix is a Perron matrix.

Theorem 3: If AN > 0 for some odd positive integer N

then A is a Perron matrix.

Proof: Suppose (A) = {1, 2, ..., r}.

Then (AN) = {1
N, 2

N, ..., r
N}.

Since AN is positive, one of these eigenvalues, say 1
N, is

real and for all i  2, |i|
N < 1

N.

Then for all i  2, |i| < |1|.

Clearly 1 must have multiplicity 1.

Suppose 1 is non-real. Then its conjugate, say 2 would

be also an eigenvalue.

But that would give |2|
N = |1|

N, a contradiction.

Hence 1 is real.

If 1 < 0 then 1
N < 0, a contradiction (remember that N

is odd). ☺

 The requirement that N be odd is necessary, as the

following example shows.

Example 9: If A = 













−

−−

02

21
 then

A2 = 













22

23
 > 0.

220


A

2() = 2 − 5 + 4

 = ( − 1)( − 4).

Hence (A2) = {1, 4} and so A2 is a Perron matrix.

However A() = 2 +  −2

 = ( − 1)( + 2).

So (A) = {1, −2} and so A is not a Perron matrix.

 But, for non-negative matrices, any power that is

positive is sufficient to ensure that the original matrix is a

Perron matrix.

Theorem 4: If A  0 and AN > 0 then AM > 0

for all M  N.

Proof: Let B = AN. Then the i-j component of

AN+1 = 
k

aikbkj . Each term is non-negative, and can only

be zero if aik = 0 for all k. But then the i’th row of every

power of A would be zero, a contradiction. ☺

Corollary: If A  0 and AN > 0 for some N then A is a

Perron matrix.

§7.5. Computational Complexity
 An algorithm is a computational procedure for

finding the answer to some mathematical (or other)

problem. Mostly they are implemented on a computer, but

simple algorithms are still carried out using just pencil

221

and paper. There are still some people alive who don’t

need to reach for their calculators to check the addition on

a restaurant bill! Addition and multiplication of integers

can be carried out by hand using algorithms that are still

taught in schools.

The two most important requirements are:

(1) it should terminate in finite time;

(2) it should always give the correct answer.

 Beyond this are considerations of storage space in

the computer and computational time. We have seen two

methods for evaluating a determinant, the first order

expansion and the second order expansion. Which is the

best one to use in practice? We have seen two methods

for finding the inverse of a matrix, using cofactors and

reducing (A | I) to (I | A−1) by elementary row operations.

Which one is computationally more efficient?

 First there is the consideration of storage space.

The very early computers had very little storage space and

programmers bent over backwards to use every single

byte efficiently. A bit is the amount of storage space

required to store a 0 or a 1. A byte is 8 bits and is capable

of storing a number from 0 to 255. Bytes can be used

together to store larger integers or real numbers (up to a

certain number of significant figures). The first computer

I ever programmed was at a time when there were only 6

222

computers in the whole of Australia. This one had 16K of

memory and took up a whole room! Even a simple

program could easily use this up very quickly.

 The first personal computer I ever owned had only

1K of memory. It used a TV screen for its display and

about a quarter of that precious memory was reserved for

storing the screen display. Clever programmers on these

machines soon learnt how to get access to the display

memory and frequently used it to do intermediate

computations before displaying the final answers. You

could see this happening as the screen flashed all sorts of

nonsense on the screen during the calculation before

finally displaying the answers at the end.

 These days are long gone. Memory is virtually

unlimited. It’s not unusual to have, on an ordinary

personal computer, 128 gigabytes of memory. That is

about 128 thousand million bytes. Programs frequently

use the hard disk as virtual memory, and here several

terabytes are not uncommon. That’s about a million

million bytes.

 Apart from the ready availability of memory most

alternative algorithms for performing the same

calculation use roughly the same amount of memory. In

comparing algorithms you can forget the amount of

memory used.

223

 This leaves speed. We want to choose an algorithm

that performs faster than all its competitors. Now speed

depends on hardware. Some computers are much faster

than others, but no computer is as fast as its programmers

would like. Speeds have increased over the years, but

nowhere to the extent that memory has.

 In comparing alternative algorithms we don’t need

to bother about the speed of the hardware. Whichever

algorithm we use it will be used on a specific piece of

hardware. What is important is the number of steps. We

want to make this as little as possible.

 Moving data around, such as when we swap two

rows in a matrix, is almost instantaneous. Addition and

subtraction take about the same amount of time.

Multiplication and division often take somewhat longer,

though on some computers they take about the same time.

 More complicated mathematical functions, such as

square roots or trigonometric functions, use power series

expansions and need to be analysed separately. We won’t

be using any of these here, so we’ll just count the total

number of multiplications and divisions. For simplicity

we’ll assume that both of these take the same amount of

time. In a test on a certain laptop using a certain

programming language, each took about 10

microseconds.

 The input to an algorithm will vary, and the number

of steps (by which we mean just multiplication and

224

division) will vary with the size of the input. Evaluating a

100  100 determinant will take many more steps than for

a 3  3 determinant, no matter which algorithm we use.

So we need to measure the size of the input and work out

the number of steps as a function of this size. This

function we call the complexity function. If we denote it

by  then (n) is the number of steps the algorithm takes

with input of size n.

 The size of an input can be defined in many

different ways and hence the complexity function

depends on such a definition. For example we might

define the size of an n  n matrix to be just n. Or we might

define it to be n2, the number of components. Perhaps we

might define it to be the number of bytes required to store

the input, which will be a constant multiple of n2.

 If the input is a positive integer N, we might define

N to be the size of the input. Or we might define it to be

the number of digits, which will be approximately log10N.

 One of the problems in determining the complexity

function of an algorithm is that for many algorithms

inputs of similar sizes might take dramatically different

times to perform. For example, factorising a positive

integer N by the most obvious method of testing for

divisibility by all the numbers from 2 up to N would take

about N divisions if N is prime and we had to go all the

way up to N.

225

 On the other hand if N = 2n for some n, we’d find

factors of 2 at each stage and the algorithm would take

about n steps, that is log2N steps which is very much better

than N. For such algorithms we’d need to estimate the

average number of steps and this can get very

complicated.

 Now for factorisation (n) = N, if we take the

worst case. This doesn’t sound too bad for a complexity

function. But that is because we’re taking the number

itself as a measure of size. A more appropriate measure

would be the number of digits of N. This value will be

about n = log10N and in terms of n, (n) = 10n which is

roughly 3n/2. Such a complexity function is called

exponential. An algorithm with an exponential

complexity function is considered to be of limited use.

 There are improvements to the simple factorisation

algorithm, but these only make minor reductions to the

number of steps. Essentially factorisation of integers is

considered to be an intractable problem, that is,

algorithms do exist to solve the problem but the number

of steps grows so fast with the input size that it is only

feasible to use it on relatively small input. Factorising an

arbitrary 200 digit number has been done but it has taken

a large number of very fast computers many months to

perform just a single factorisation.

226

 Let’s turn our attention to the problem of

evaluating determinants, comparing the first order

method with the second order method.

First Order Method: Let an be the number of steps in

evaluating an n  n determinant by the first order method,

running along the first row. We have to evaluate n

determinants of size (n−1)  (n−1). Each involves an−1

steps so that means nan−1 steps in all. Then each

determinant is multiplied by plus or minus the entry in the

first row, giving an extra n steps. In all we have nan−1 + n

steps.

 So we get the recurrence equation for an, the

number of steps in evaluating an n  n determinant by the

First Order Method:

a1 = 0;

an = n(an−1 + 1).

Second Order Method: Let bn be the number of steps in

evaluating an n  n determinant by this method. Clearly

b1 = 0 and b2 = 3. We take each of the






n

2
 pairs of columns.

For each one we must compute an (n−2)  (n−2)

determinant, taking bn−2 steps. We then multiply this by a

certain 2  2 determinant, taking an extra 4 steps – three

227

to calculate the 2  2 determinant and one to multiply the

two determinants which, in all takes bn−2 + 4 steps.

 This has to be done






n

2
 times before these values

are combined to give the answer.

So we get the recurrence equation:

b1 = 0;

b2 = 2;

bn =






n

2
 (bn−2 + 4) .

 For the Echelon Form Method (reduce to echelon

form and multiply by the diagonal elements) the

approximate number of multiplications and divisions is

given by:

cn =
1

6
 (4n3 − 3n2 + 5n − 6).

n 1st Order

Expansion

2nd Order

Expansion

Echelon

Form

1 0 0 0

2 2 2 4

3 9 9 15

4 40 30 37

5 205 120 74

6 1236 495 130

228

7 8,659 2,583 209

8 69,280 13,940 315

 So the second order expansion is substantially

quicker than the first order expansion. But the Echelon

Form Method is enormously faster. I doubt if there’s a

computer on earth that could compute a 1000  1000

determinant by any other method than the Echelon Form

one.

 Remember that I introduced the second order

expansion method not because it’s quicker but as an aid

to proving theorems about determinants.

 Good algorithms are considered to be those where

(n) is a polynomial. These are said to operate in

polynomial time. Bad algorithms are those where (n) is

exponential, or worse. Of course for some problems there

are algorithms but no ‘good’ ones. Fortunately most

problems in linear algebra can be solved by polynomial

time algorithms.

229

EXERCISES FOR CHAPTER 7

Exercise 1: Use the Power Method to find the dominant

eigenvalue, if one exists, for the following matrices:

(i) 








23

15
; (ii) 







 −

14

12
; (iii) 









36

28
; (iv) 







 −

30

25
.

Exercise 2: Use the Power Method to find the dominant

eigenvalue, if one exists, for the following matrices:

(i)
















−

−

301

726

415

; (ii)
















−

−

564

1380

116

; (iii)
















−

−

780

216

432

.

Exercise 3: Use the Power Method to find the dominant

eigenvalue, if one exists, for the following matrices:

(i)





















2410

1523

0412

5111

; (ii)





















3541

2034

2713

0641

.

Exercise 4: Find the recessive eigenvalue, if one exists,

of the following matrices:

230

(i) 








23

15
; (ii)

















−

−

301

726

415

; (iii)





















2410

1523

0412

5111

.

Exercise 5: Find the nearest eigenvalue to 5 for the matrix

A =
















−

−

601

072

125

 .

231

SOLUTIONS FOR CHAPTER 7

Exercise 1: (i) 5.7913; (ii) no dominant eigenvalue;

(iii) 9.7720; (iv) 5 (BEWARE: if you start with v = 








1

1

the method will give the value 3. This is because this is

an inappropriate starting vector.)

Exercise 2: (i) 5.8063; (ii) no dominant eigenvalue;

(iii) 10.3768.

Exercise 3: (i) 8.9165; (ii) 11.1062.

Exercise 4: (i) The inverse is B = 








−

−

53

12

7

1
.

Applying the Power Method to 








−

−

53

12
 we get the

dominant eigenvalue of 5.7913.

The dominant eigenvalue of B is
5.7913

7
 = 0.8273.

Hence the recessive eigenvalue of the original matrix is
1

0.8273
 = 1.2088.

Note that in exercise 1 we found the dominant eigenvalue

to be 5.7913.

232

The sum of these eigenvalues is 7.0001 which is very

close to the trace.

(ii) The inverse is B =
27

1

















−

−

−−

412

591911

1536

.

Applying the Power Method to
















−

−

−−

412

591911

1536

 we

find that it doesn’t have a dominant eigenvalue so the

original matrix doesn’t have a smallest. However all is not

lost. We know from exercise 1 that the dominant

eigenvalue is 5.7913 and the trace is 10, so the sum of the

other two eigenvalues is 10 − 5.7913 = 4.1937. If the two

remaining are real they must be both equal to
4.1937

2
 =

2.09685. The product of these eigenvalues is 25.4630.

Clearly this can’t be the case since the determinant must

be an integer. In fact the determinant is 27.

So the remaining two eigenvalues must be a  bi where a,

b are real. Clearly a = 2.09685.

Since the product of the eigenvalues must be 27 we have

a2 + b2 =
27

5.7913
 = 4.6622.

So b2 = 4.6622 − 2.096852 = 0.2654.

233

This gives b =  0.5152. So in fact we have found all three

eigenvalues.

(iii) The inverse is B =





















−

−

−−

−−

0333

2460

422306

6393

12

1
.

Applying the Power Method to





















−

−

−−

−−

0333

2460

422306

6393

we get the dominant eigenvalue of −33.0680.

The dominant eigenvalue of B is −
33.0680

12
 = −2.7557.

Hence the smallest eigenvalue of the original matrix is

−
1

2.7557
 = − 0.3629.

Exercise 5: Let B = A − 5I =
















−

−

101

022

120

.

B−1 =
















−

−−

422

212

222

6

1
.

234

The dominant eigenvalue of 6B =
















−

−−

422

212

222

is 5.1394.

The dominant eigenvalue of B−1 is
5.1394

6
 = 0.8566.

The recessive eigenvalue of A − 5I is therefore
1

0.8566
 = 1.1674.

The closest eigenvalue of A to 5 is 6.1674.

235

coopersnotes.net
LIST OF TITLES

GENERAL • The Mathematics At The Edge Of The

Rational Universe

ELEMENTARY 3rd YEAR UNI

• Basic Mathematics • Group Theory volume 1

• Concepts of Algebra • Group Theory volume 2

• Concepts of Calculus • Galois Theory

• Elementary Algebra • Graph Theory

• Elementary Calculus • Number Theory

 • Geometry

1st YEAR UNI • Topology

• Techniques of Algebra • Set Theory

• Techniques of Calculus

• Matrices POSTGRADUATE

 • Ring Theory

2nd YEAR UNI • Representation Theory

• Linear Algebra • Quadratic Forms

• Languages & Machines • Group Tables vol 1

• Discrete Mathematics • Group Tables vol 2

236

