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7. NUMERICAL LINEAR 

ALGEBRA 
 

§7.1. The Power Method for Finding 

Dominant Eigenvalues 
 Finding eigenvalues, by first finding the 

characteristic polynomial, can be 

quite difficult for large matrices.  

Often we only want to find the 

dominant eigenvalue, that is, the one 

with largest absolute value. 

 The dominant eigenvalue of a 

matrix is a real eigenvalue that occurs 

with multiplicity 1 and whose 

absolute value exceeds the modulus 

of any other eigenvalue. A dominant 

eigenvector is an eigenvector for the 

dominant eigenvalue (if it exists). 

Clearly not all square matrices have a 

dominant eigenvalue. 
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Example 1: The matrix A = 






10  7   −2

0   9 −31

0   1   −2

  has eigenvalues 

10, 
7  3i

2
 . The non-real eigenvalues have modulus 

13 , so 10 is the dominant eigenvalue. 

 

Example 2: If A is as above, then A − 9I = 






1  7   −2

0  0  −31

0  1  −11

  

has eigenvalues 1, 
−11  3i

2
 . (We just subtract 9 from 

the eigenvalues of A.) The non-real eigenvalues have 

modulus 31 , so there is no dominant eigenvalue. 

 

Theorem 1: Suppose A is a non-zero n  n diagonalisable 

real matrix with eigenvalues 1, 2, ..., k and suppose that 

1 is the dominant eigenvalue. Let e1, ..., ek be a 

corresponding basis of eigenvectors. Let v0 be any vector 

in ℝn such that v0  e2, ..., en. 

For all n, let vn = Anv0. Then 
Avn | vn

|vn|2
 → 1 as n → . 

Proof: Since A is a non-zero diagonalisable matrix it 

must have a non-zero eigenvalue and so 1  0. 

Let ei | ej = eij. 
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Since each ei  0, eii = |ei|
2 > 0 for all i. 

Now v0 = x1e1 + x2e2 + ... + xkek for some real numbers x1, 

x2, ..., xk where x1  0. 

 

Then vn = Anv0 = x1 1
n

 e1 + x2 2
n e2 + ... + xk k

n ek. 

Avn = An+1v0 = x1 1
n+1

 e1 + x2 2
n+1 e2 + ... + xk k

n+1 ek. 

So  
Avn | vn

|vn|2
 = 


i,j=1

k

  xixj i 
n+1j

n eij


i,j=1

k

  xixj i 
nj 

neij

  

Here the sums are over all combinations of i, j. 

                       = 

x1
21

2n+1|e1|
2 + 

ij1

k

  xixj i 
n+1j

n eij

x1
21

2n|e1|
2 + 

ij1

k

  xixj i 
nj 

neij

  

Here the sums are over all combinations of i, j except 

when i = j = 1. This has been separated out. 
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                      = 

1 + 
ij1

k







xixj

xi
2 i







ij

1
2

n







eij

|e1|
2

1 + 
ij1

k







xixj

x1
2







ij

1
2

n







eij

|e1|
2

  

                       → 1 as n → . 

 

This is because 






ij

1
2   < 1, and so 







ij

1
2  

n

 → 0, except 

when i = j = 1. ☺ 

 

 This theorem is the basis for the Power Method. 

We start by multiplying an initial vector v by A and 

compute Av|v, |v|2 and their quotient, q = 
Av|v

|v|2
 . 

 We’re going to repeatedly multiply v by A. Since 

the components of Anv could become large, and since any 

non-zero scalar multiple of an eigenvector is an 

eigenvector, we scale Av by dividing it by the largest 

absolute value of its components. Having scaled Av we 

use this as the next v and continue. 

 If all goes well Av will converge to a dominant 

eigenvector and  will converge to the dominant 
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eigenvalue. For simplicity we set up a Power Method 

Worksheet.  

 

POWER METHOD WORKSHEET 

Finds the dominant eigenvalue  and eigenvector v 

A v Av Av,v |v|2 q 

A 







1

...

1
  

 

 

 

 

 

n 
Av|v

|v|2
  

 

A 

 

divide Av 

by largest 

component 

→ v  

 

 

 
→  

 

…… ………….. ……… …….. …. ……….. 

 

Example 3: Find the dominant eigenvalue of A = 








54

13
 

Solution: 

A v Av Av|v |v|2 q 










54

13
 









1

1
 









9

4
 

13 2 6.5 










54

13
 









1

4444.0

 










7776.6

3332.2
 

7.8144 1.1975 6.5256 










54

13
 









1

3443.0
 









3772.6

0329.2
 

7.0771 1.1185 6.3273 
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








54

13
 









1

3178.0
 









2712.6

9534.1
 

6.8920 1.1010 6.2598 










54

13
 









1

3115.0
 









246.6

9345.1
 

6.8486 1.0970 6.2430 










54

13
 









1

3097.0
 









2388.6

9291.1
 

6.8362 1.0959 6.2380 










54

13
 









1

3092.0
 









2368.6

9276.1
 

6.8328 1.0956 6.2366 










54

13
 









1

3091.0
 









2364.6

9273.1
 

6.8321 1.0955 6.2365 










54

13
 









1

3090.0
 









2360.6

9270.1
 

6.8314 1.0955 6.2359 

 

 So our estimate of the dominant eigenvalue is 

6.2359. Using the fact that the trace is 8 we can find the 

other eigenvalue to be 1.7641. Of course, we would never 

use the Power Method for a 2  2 matrix. 

 

§7.2. Recessive Eigenvalues 
 Suppose we’d like to find other eigenvalues. The 

recessive eigenvalue (if it exists) of a matrix is a real 

eigenvalue that occurs with multiplicity 1 and whose 

absolute value is less than the modulus of any other 

eigenvalue. A recessive eigenvector is an eigenvector for 



 

209 

 

the recessive eigenvalue (if it exists). Again, not all square 

matrices have a recessive eigenvalue. 

 

Example 4: The matrix A = 






10  7   −2

0   9 −31

0   1   −2

  has eigenvalues 

10, 
7  3i

2
 . 

The non-real eigenvalues have modulus 13 , so this 

matrix does not have a recessive eigenvalue. 

 

Example 5: The matrix  






1  7   −2

0  0  −31

0  1  −11

  has eigenvalues 

1, 
−11  3i

2
 . The non-real eigenvalues have modulus 

31 , so there is a recessive eigenvalue, namely 1. 

 

 Since the non-zero eigenvalues of A−1 are the 

reciprocals of the non-zero eigenvalues of A, the 

recessive eigenvalue of A is the reciprocal of the 

dominant eigenvalue of A−1. So to find the recessive 

eigenvalue of A we proceed as follows. 
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TO FIND THE RECESSIVE EIGENVALUE OF A 

(Smallest in absolute value) 

(1) Find A−1. (If A is not invertible, the recessive 

eigenvalue is 0.) 

(2) Use the Power Method to find the dominant 

eigenvalue, , of A−1. 

(3) Then 1/ is the smallest eigenvalue of A. 

 

Example 6: Find the recessive eigenvalue of 

A = 
















−

−

−

159702882

84372462

39172212

. 

Solution: A−1 =  − 
1

30
 

















−−

−−

−

2076126

72321

216

. 

So B = 30A−1 = 
















−

−

−−

2076126

72321

216

. 

This is the matrix to which we apply the Power Method. 
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B v Bv Bv|v 

















−

−

−−

2096126

72321

216

 
















1

1

1

 














−

50

5

5

 

50 

















−

−

−−

2096126

72321

216

 














−

1

1.0

1.0

 
















− 2.2

6.2

5.2

 

−2.19 

















−

−

−−

2096126

72321

216

 
















− 8462.0

1

9615.0

 
















−

−

225.8

7319.8

4614.8

 

−23.8275 

 

v Bv|v |v|2 q 

















1

1

1

 

50 3 16.6667 















−

1

1.0

1.0

 

−2.19 1.02 −2.1471 

















− 8462.0

1

9615.0

 

−23.8275 2.6405 −9.0239 
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B v Bv Bv|v 

















−

−

−−

2096126

72321

216

 
















− 9419.0

1

9690.0

 
















−

−

256.7

2443.9

6978.8

 

−24.5069 

















−

−

−−

2096126

72321

216

 
















− 7849.0

1

9409.0

 
















−

−

8554.6

7354.8

2152.8

 

−21.8459 

















−

−

−−

2096126

72321

216

 
















− 7848.0

1

9404.0

 
















−

−

7944.6

7452.8

2120.8

 

−21.8000 

 

  

v Bv|v |v|2 q 

















− 9419.0

1

9690.0

 

−24.5069 2.8261 −8.6716 

















− 7849.0

1

9409.0

 

−21.8459 2.5014 −8.7335 

















− 7848.0

1

9404.0

 

−21.8000 2.5003 −8.7190 
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B v Bv Bv|v 

















−

−

−−

2096126

72321

216

 
















− 7769.0

1

9390.0

 
















−

−

7760.6

7193.8

1878.8

 

−21.6719 

















−

−

−−

2096126

72321

216

 
















− 7771.0

1

9390.0

 
















−

−

7720.6

7207.8

1882.8

 

−21.6719 

















−

−

−−

2096126

72321

216

 
















− 7765.0

1

9389.0

 
















−

−

7714.6

7186.8

1864.8

 

−21.6628 

 

  

v Bv|v |v|2 q 

















− 7769.0

1

9390.0

 

−21.6719 2.4853 −8.7200 

















− 7771.0

1

9390.0

 

−21.6719 2.4856 −8.7190 

















− 7765.0

1

9389.0

 

−21.6628 2.4845 −8.7192 
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So we have found that the dominant eigenvalue of 

B = 30A−1 is approximately −8.7192. 

 

Hence the dominant eigenvalue of A−1 is approximately 

−
8.7192

30
  = − 0.29064. 

Therefore the recessive eigenvalue of A is approximately 

− 
1

0.29064
  = − 3.4407. 

The vector 
















−

−

7714.6

7186.8

1864.8

 is an eigenvector for A, as well as 

A−1 and 30A−1 for this eigenvalue. 

 

§7.3. Finding Nearest Eigenvalues 
 We can adapt the above methods to the problem of 

finding other eigenvalues. Since the eigenvalues of A − kI 

are the eigenvalues of A, minus k, if we want the 

eigenvalue nearest to the real number k we find the 

recessive eigenvalue of A − kI. 
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TO FIND THE EIGENVALUE CLOSEST TO k 

(1) Write down B = A − kI. 

(2) Compute B−1. (If A − kI is not invertible then k is 

itself an eigenvalue.) 

(3) Use the Power Method to find the dominant 

eigenvalue, , of B−1. 

(4) Then −1 is the recessive eigenvalue for B. 

(5) Then  −1 + k is the nearest eigenvalue to k for A. 

 

Note that this method will not work for repeated 

eigenvalues, or conjugate pairs of eigenvalues. 

 

Example 7: Find the eigenvalue of 

A = 





















114154

12769

811105

132316

 that is closest to 10, and find a 

corresponding eigenvector. 

Solution: Let B = A − 10I =.





















−

−

914154

12369

81105

132310
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B−1 = 
1

1440
 





















−−−

−

=−

−−

115397311

23817147

87129201303

49423287601

. 

Let C = 1440B−1 = 





















−−−

−

=−

−−

115397311

23817147

87129201303

49423287601

. 

Using the Power Method on C, starting with v = 





















1

1

1

1

 we 

get −720 as the dominant eigenvalue for C. 

  − 
720

1440
  = − 0.5 is the dominant eigenvalue for B−1. 

 −2 is the recessive eigenvalue for B = A − 10I. 

 8 is the nearest eigenvalue to 10, for A. 

For a corresponding eigenvector we may take a dominant 

eigenvector for C, namely 





















−

−

5.0

0

5.0

1

, or more simply, 





















−

−

1

0

1

2
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§7.4. Perron Matrices 
 If the Power Method converges it will usually give 

the dominant eigenvalue and eigenvector. The exception 

is when you pick a starting vector that just happens to be 

in the subspace spanned by the eigenvectors for the other 

eigenvalues. This is quite unlikely but you must be aware 

that it can happen. You could try a second starting vector 

if you were really worried. 

But the method may not even converge. It may not 

converge for a couple of reasons. The q values estimate 

may go to infinity. This will happen if the eigenvalue with 

largest modulus is repeated. Or it may jump around. This 

will happen when there is more than one eigenvalue with 

largest modulus, or one repeated value. 

           It would be useful to know in advance whether the 

method should work. Such matrices will have one 

positive real eigenvalue, with multiplicity 1, that exceeds 

the modulus of all other eigenvalues. 

 

A Perron matrix is a real 

square matrix that has a 

positive real eigenvalue R, 

with multiplicity 1, such 

that the modulus of all 

other eigenvalues is 

strictly less than R.  
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This is precisely the type of matrix for which the Power 

Method works.  

 The spectrum of a matrix A is the set of its 

eigenvalues. It’s denoted by (A). The spectral radius of 

A is the largest modulus of the eigenvalues of A. So a 

Perron matrix has a spectral radius R where R is the 

dominant eigenvalue. 

Example 8: Find the spectrum and spectral radius of 

A = 





















3214

2143

1432

4321

. 

Solution: From example 4, 

(A) = {10, −2 + 2i, −2 − 2i, 2}. 

The spectral radius is 10. Note that |−2  2i| = 8 < 10. 

 

 A real matrix A = (aij) is called a non-negative 

matrix if each aij  0. We denote this by writing A  0. 

We call A a positive matrix if each aij > 0. This we denote 

by A > 0. 

 

Theorem 2 (PERRON): Positive matrices are Perron 

matrices. 

Proof: We omit the proof here.  
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 Often a matrix is not a positive matrix but has a 

power that is. In most cases this shows that the original 

matrix is a Perron matrix. 

Theorem 3: If AN > 0 for some odd positive integer N 

then A is a Perron matrix. 

Proof: Suppose (A) = {1, 2, ..., r}. 

Then (AN) =  {1
N, 2

N, ..., r
N}. 

Since AN is positive, one of these eigenvalues, say 1
N, is 

real and for all i  2, |i|
N < 1

N. 

Then for all i  2, |i| < |1|. 

Clearly 1 must have multiplicity 1. 

Suppose 1 is non-real. Then its conjugate, say 2 would 

be also an eigenvalue. 

But that would give |2|
N = |1|

N, a contradiction. 

Hence 1 is real. 

If 1 < 0 then 1
N < 0, a contradiction (remember that N 

is odd). ☺ 

 The requirement that N be odd is necessary, as the 

following example shows. 

 

Example 9: If A = 













−

−−

02

21
 then 

A2 = 













22

23
 > 0. 
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
A

2() = 2 − 5 + 4 

            = ( − 1)( − 4). 

Hence (A2) = {1, 4} and so A2 is a Perron matrix. 

However A() = 2 +  −2 

                          = ( − 1)( + 2). 

So (A) = {1, −2} and so A is not a Perron matrix. 

 

 But, for non-negative matrices, any power that is 

positive is sufficient to ensure that the original matrix is a 

Perron matrix. 

 

Theorem 4: If A  0 and AN > 0 then AM > 0 

for all M  N. 

Proof: Let B = AN. Then the i-j component of 

AN+1 = 
k

aikbkj . Each term is non-negative, and can only 

be zero if aik = 0 for all k. But then the i’th row of every 

power of A would be zero, a contradiction. ☺ 

Corollary: If A  0 and AN > 0 for some N then A is a 

Perron matrix. 

 

§7.5. Computational Complexity 
 An algorithm is a computational procedure for 

finding the answer to some mathematical (or other) 

problem. Mostly they are implemented on a computer, but 

simple algorithms are still carried out using just pencil 
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and paper. There are still some people alive who don’t 

need to reach for their calculators to check the addition on 

a restaurant bill!  Addition and multiplication of integers 

can be carried out by hand using algorithms that are still 

taught in schools. 

 

The two most important requirements are: 

(1) it should terminate in finite time; 

(2) it should always give the correct answer. 

 

 Beyond this are considerations of storage space in 

the computer and computational time. We have seen two 

methods for evaluating a determinant, the first order 

expansion and the second order expansion. Which is the 

best one to use in practice?  We have seen two methods 

for finding the inverse of a matrix, using cofactors and 

reducing ( A | I) to ( I | A−1) by elementary row operations. 

Which one is computationally more efficient? 

 First there is the consideration of storage space. 

The very early computers had very little storage space and 

programmers bent over backwards to use every single 

byte efficiently. A bit is the amount of storage space 

required to store a 0 or a 1. A byte is 8 bits and is capable 

of storing a number from 0 to 255. Bytes can be used 

together to store larger integers or real numbers (up to a 

certain number of significant figures). The first computer 

I ever programmed was at a time when there were only 6 
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computers in the whole of Australia. This one had 16K of 

memory and took up a whole room! Even a simple 

program could easily use this up very quickly. 

 The first personal computer I ever owned had only 

1K of memory. It used a TV screen for its display and 

about a quarter of that precious memory was reserved for 

storing the screen display. Clever programmers on these 

machines soon learnt how to get access to the display 

memory and frequently used it to do intermediate 

computations before displaying the final answers. You 

could see this happening as the screen flashed all sorts of 

nonsense on the screen during the calculation before 

finally displaying the answers at the end. 

 These days are long gone. Memory is virtually 

unlimited. It’s not unusual to have, on an ordinary 

personal computer, 128 gigabytes of memory. That is 

about 128 thousand million bytes. Programs frequently 

use the hard disk as virtual memory, and here several 

terabytes are not uncommon. That’s about a million 

million bytes. 

 Apart from the ready availability of memory most 

alternative algorithms for performing the same 

calculation use roughly the same amount of memory. In 

comparing algorithms you can forget the amount of 

memory used. 
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 This leaves speed. We want to choose an algorithm 

that performs faster than all its competitors. Now speed 

depends on hardware. Some computers are much faster 

than others, but no computer is as fast as its programmers 

would like. Speeds have increased over the years, but 

nowhere to the extent that memory has. 

 In comparing alternative algorithms we don’t need 

to bother about the speed of the hardware. Whichever 

algorithm we use it will be used on a specific piece of 

hardware. What is important is the number of steps. We 

want to make this as little as possible. 

 Moving data around, such as when we swap two 

rows in a matrix, is almost instantaneous. Addition and 

subtraction take about the same amount of time. 

Multiplication and division often take somewhat longer, 

though on some computers they take about the same time. 

 More complicated mathematical functions, such as 

square roots or trigonometric functions, use power series 

expansions and need to be analysed separately. We won’t 

be using any of these here, so we’ll just count the total 

number of multiplications and divisions. For simplicity 

we’ll assume that both of these take the same amount of 

time. In a test on a certain laptop using a certain 

programming language, each took about 10 

microseconds. 

 The input to an algorithm will vary, and the number 

of steps (by which we mean just multiplication and 
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division) will vary with the size of the input. Evaluating a 

100  100 determinant will take many more steps than for 

a 3  3 determinant, no matter which algorithm we use. 

So we need to measure the size of the input and work out 

the number of steps as a function of this size. This 

function we call the complexity function. If we denote it 

by  then (n) is the number of steps the algorithm takes 

with input of size n. 

 The size of an input can be defined in many 

different ways and hence the complexity function 

depends on such a definition. For example we might 

define the size of an n  n matrix to be just n. Or we might 

define it to be n2, the number of components. Perhaps we 

might define it to be the number of bytes required to store 

the input, which will be a constant multiple of n2. 

 If the input is a positive integer N, we might define 

N to be the size of the input. Or we might define it to be 

the number of digits, which will be approximately log10N. 

 One of the problems in determining the complexity 

function of an algorithm is that for many algorithms 

inputs of similar sizes might take dramatically different 

times to perform. For example, factorising a positive 

integer N by the most obvious method of testing for 

divisibility by all the numbers from 2 up to N would take 

about N divisions if N is prime and we had to go all the 

way up to N. 
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 On the other hand if N = 2n for some n, we’d find 

factors of 2 at each stage and the algorithm would take 

about n steps, that is log2N steps which is very much better 

than N. For such algorithms we’d need to estimate the 

average number of steps and this can get very 

complicated. 

 Now for factorisation (n) = N, if we take the 

worst case. This doesn’t sound too bad for a complexity 

function. But that is because we’re taking the number 

itself as a measure of size. A more appropriate measure 

would be the number of digits of N. This value will be 

about n = log10N and in terms of n, (n) = 10n  which is 

roughly 3n/2. Such a complexity function is called 

exponential. An algorithm with an exponential 

complexity function is considered to be of limited use. 

 There are improvements to the simple factorisation 

algorithm, but these only make minor reductions to the 

number of steps. Essentially factorisation of integers is 

considered to be an intractable problem, that is, 

algorithms do exist to solve the problem but the number 

of steps grows so fast with the input size that it is only 

feasible to use it on relatively small input. Factorising an 

arbitrary 200 digit number has been done but it has taken 

a large number of very fast computers many months to 

perform just a single factorisation. 
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 Let’s turn our attention to the problem of 

evaluating determinants, comparing the first order 

method with the second order method. 

 

First Order Method:  Let an be the number of steps in 

evaluating an n  n determinant by the first order method, 

running along the first row. We have to evaluate n  

determinants of size (n−1)  (n−1). Each involves an−1 

steps so that means nan−1 steps in all. Then each 

determinant is multiplied by plus or minus the entry in the 

first row, giving an extra n steps. In all we have nan−1 + n 

steps. 

 So we get the recurrence equation for an, the 

number of steps in evaluating an n  n determinant by the 

First Order Method: 

a1 = 0; 

an = n(an−1 + 1). 

 

Second Order Method: Let bn be the number of steps in 

evaluating an n  n determinant by this method. Clearly 

b1 = 0 and b2 = 3. We take each of the 






n

2
 pairs of columns. 

For each one we must compute an (n−2)  (n−2) 

determinant, taking bn−2 steps. We then multiply this by a 

certain 2  2 determinant, taking an extra 4 steps – three 
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to calculate the 2  2 determinant and one to multiply the 

two determinants which, in all takes bn−2 + 4 steps. 

 This has to be done 






n

2
  times before these values 

are combined to give the answer. 

So we get the recurrence equation: 

b1 = 0; 

b2 = 2; 

bn = 






n

2
 (bn−2 + 4) . 

 

 For the Echelon Form Method (reduce to echelon 

form and multiply by the diagonal elements) the 

approximate number of multiplications and divisions is 

given by: 

cn = 
1

6
 (4n3 − 3n2 + 5n − 6). 

n 1st Order 

Expansion 

2nd Order 

Expansion 

Echelon 

Form 

1 0 0 0 

2 2 2 4 

3 9 9 15 

4 40 30 37 

5 205 120 74 

6 1236 495 130 
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7 8,659 2,583 209 

8 69,280 13,940 315 

 So the second order expansion is substantially 

quicker than the first order expansion. But the Echelon 

Form Method is enormously faster. I doubt if there’s a 

computer on earth that could compute a 1000  1000 

determinant by any other method than the Echelon Form 

one. 

 Remember that I introduced the second order 

expansion method not because it’s quicker but as an aid 

to proving theorems about determinants. 

 

 Good algorithms are considered to be those where 

(n) is a polynomial. These are said to operate in 

polynomial time. Bad algorithms are those where (n) is 

exponential, or worse. Of course for some problems there 

are algorithms but no ‘good’ ones. Fortunately most 

problems in linear algebra can be solved by polynomial 

time algorithms. 
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EXERCISES FOR CHAPTER 7 
 

Exercise 1: Use the Power Method to find the dominant 

eigenvalue, if one exists, for the following matrices: 

(i) 








23

15
; (ii) 







 −

14

12
; (iii) 









36

28
; (iv) 







 −

30

25
. 

 

Exercise 2: Use the Power Method to find the dominant 

eigenvalue, if one exists, for the following matrices: 

(i)
















−

−

301

726

415

; (ii) 
















−

−

564

1380

116

; (iii) 
















−

−

780

216

432

. 

 

Exercise 3: Use the Power Method to find the dominant 

eigenvalue, if one exists, for the following matrices: 

(i)





















2410

1523

0412

5111

; (ii) 





















3541

2034

2713

0641

. 

 

Exercise 4: Find the recessive eigenvalue, if one exists, 

of the following matrices: 
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(i) 








23

15
; (ii) 

















−

−

301

726

415

; (iii) 





















2410

1523

0412

5111

. 

 

Exercise 5: Find the nearest eigenvalue to 5 for the matrix 

A = 
















−

−

601

072

125

 . 
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SOLUTIONS FOR CHAPTER 7 
 

Exercise 1: (i) 5.7913; (ii) no dominant eigenvalue; 

(iii) 9.7720; (iv) 5 (BEWARE: if you start with v = 








1

1
 

the method will give the value 3. This is because this is 

an inappropriate starting vector.) 

 

Exercise 2: (i) 5.8063; (ii) no dominant eigenvalue; 

(iii) 10.3768. 

 

Exercise 3: (i) 8.9165; (ii) 11.1062. 

 

Exercise 4: (i) The inverse is B = 








−

−

53

12

7

1
. 

Applying the Power Method to 








−

−

53

12
 we get the 

dominant eigenvalue of 5.7913. 

The dominant eigenvalue of B is 
5.7913

7
 = 0.8273. 

Hence the recessive eigenvalue of the original matrix is 
1

0.8273
 = 1.2088. 

Note that in exercise 1 we found the dominant eigenvalue 

to be 5.7913. 
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The sum of these eigenvalues is 7.0001 which is very 

close to the trace. 

(ii) The inverse is B = 
27

1

















−

−

−−

412

591911

1536

. 

Applying the Power Method to 
















−

−

−−

412

591911

1536

 we 

find that it doesn’t have a dominant eigenvalue so the 

original matrix doesn’t have a smallest. However all is not 

lost. We know from exercise 1 that the dominant 

eigenvalue is 5.7913 and the trace is 10, so the sum of the 

other two eigenvalues is 10 − 5.7913 = 4.1937. If the two 

remaining are real they must be both equal to 
4.1937

2
  = 

2.09685. The product of these eigenvalues is 25.4630. 

Clearly this can’t be the case since the determinant must 

be an integer. In fact the determinant is 27. 

So the remaining two eigenvalues must be a  bi where a, 

b are real. Clearly a = 2.09685. 

Since the product of the eigenvalues must be 27 we have 

a2 + b2 = 
27

5.7913
 = 4.6622. 

So b2 = 4.6622 − 2.096852 = 0.2654. 
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This gives b =  0.5152. So in fact we have found all three 

eigenvalues. 

(iii)  The inverse is B = 





















−

−

−−

−−

0333

2460

422306

6393

12

1
. 

Applying the Power Method to 





















−

−

−−

−−

0333

2460

422306

6393

 

we get the dominant eigenvalue of −33.0680. 

The dominant eigenvalue of B is − 
33.0680

12
 = −2.7557. 

Hence the smallest eigenvalue of the original matrix is 

− 
1

2.7557
 = − 0.3629. 

 

Exercise 5: Let B = A − 5I = 
















−

−

101

022

120

. 

B−1 = 
















−

−−

422

212

222

6

1
. 
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The dominant eigenvalue of  6B = 
















−

−−

422

212

222

 

is 5.1394. 

The dominant eigenvalue of B−1 is 
5.1394

6
 = 0.8566. 

The recessive eigenvalue of A − 5I is therefore 
1

0.8566
  = 1.1674. 

The closest eigenvalue of A to 5 is 6.1674. 
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